zum Inhalt springen

Research Group Fiedler

 

We aim to advance the field of energy meteorology through fundamental research on meteorological processes and climatological assessments relevant for renewable power production and supply. In our research, we combine atmospheric models of different complexity, theoretical approaches, and observations. Our collaborations are inter-disciplinary, e.g., with partners from the German Weather Service and the Institute of Energy Economics (EWI) at the University of Cologne.

Peak winds and storms

We are working on evaluating atmospheric models with respect to mean winds and gusts in the boundary layer. To this end, we use statistical assessments and novel observations of winds, as well as meteorological process analyses leading to peak winds.

Find out more from Julian Steinheuer and Stephanie Fiedler

Meteorological risk assessments for renewable power

Maintaining the stability and flexibility of the energy system with an increasing share of renewable power is a challenge. We examine meteorological processes important to wind and solar power on different temporal and spatial scales, and assess their balancing potentials across Europe. To this end, we combine measurements and modelling approaches from the physical science basis of energy meteorology to the application of atmospheric data in power models.

Find out more from Linh Ho and Stephanie Fiedler

Past and future climate change

We run climate model simulations on global and regional scales. Our focus is on the hydrological cycle and aerosol effects on climate. Climate models for instance show a spread in estimates of the radiative forcing of anthropogenic aerosols. We assess reasons for the model diversity by developing new tools and help advance our understanding of aerosols in a dynamic system.

Find out more from Mark Reyers and Stephanie Fiedler

Natural and anthropogenic aerosols

Aerosols are abundant in the atmosphere. These tiny particles are emitted from natural and anthropogenic sources. We are particularly interested in desert-dust aerosols and contribute to a better understanding of dust storm dynamics, their climatology and trends.

Find out more from Mark Reyers, Robert Scheele, Feifei Mu and Stephanie Fiedler

 

Latest publications

  • Kaspar, F., Niermann, D., Borsche, M., Fiedler, S., Keller, J., Potthast, R., Rösch, T., Spangehl, T., and Tinz, B.: Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy, Adv. Sci. Res., 17, 115–128, https://doi.org/10.5194/asr-17-115-2020, 2020.
  • Steinheuer, J. and Friederichs, P.: Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory, Nonlin. Processes Geophys., 27, 239–252, https://doi.org/10.5194/npg-27-239-2020, 2020
  • Frank, C., Fiedler, S. Crewell, S., in press: Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries, Renewable Energy, https://doi.org/10.1016/j.renene.2020.07.103
  • Dhital, S., Kaplan, M. L., Orza, J. A. G., and Fiedler, S., in press: Atmospheric Dynamics of a Saharan Dust Outbreak over Mindelo, Cape Verde Islands Preceded by Rossby Wave Breaking: Multi-scale Observational Analyses and Simulations,  J. Geophys. Res. - Atmos., 10.1029/2020JD032975, available on Earth and Space Science Open Archive, doi: 10.1002/essoar.10503689.1

  • van Heerwaarden, C. C., Mol, W. B., Veerman, M. A., Benedict, I. B., Heusinkveld, B. G., Knap, W. H., Kazadzis, S., Kouremeti, N, and Fiedler, S., submitted: COVID-19 lockdown contribution to spring surface solar irradiance record in Western Europe, available on arXiv preprint arXiv:2008.13497, https://arxiv.org/abs/2008.13497

  • Fiedler, S., Crueger, T., D'Agostino, R., Peters, K., Becker, T., Leutwyler, D., Paccini, L., Burdanowitz, J., Buehler, S., Uribe, A., Dauhut, T., Dommenget, D., Fraedrich, K., Jungandreas, L., Maher, N., Naumann, A., Rugenstein, M., Sakradzija, M., Schmidt, H., Sielmann, F., Stephan, C., Timmreck, C., Zhu , X. & Stevens, B., 2020: Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review, 148, 3653–3680, https://doi.org/10.1175/MWR-D-19-0404.1

  • Orza, J.A.G., Dhital,S., Fiedler, S., Kaplan,M.L., 2020: Large scale upper-level precursors for dust storm formation over North Africa and poleward transport to the Iberian Peninsula. Part I: An observational analysis, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117688
  • Fiedler, S., Sokolik, I., 2020: Desert-Dust Aerosols, Reference Module in Earth Systems and Environmental sciences, https://doi.org/10.1016/B978-0-12-409548-9.12413-3
  • Thornhill, G., Collins, W., Olivié, D., Archibald, A., Bauer, S., Checa-Garcia, R., Fiedler, S., Folberth, G., Gjermundsen, A., Horowitz, L., Lamarque, J.-F., Michou, M., Mulcahy, J., Nabat, P., Naik, V., O'Connor, F. M., Paulot, F., Schulz, M., Scott, C. E., Seferian, R., Smith, C., Takemura, T., Tilmes, S., and Weber, J.: Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1207, in review
  • Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M.: Effective radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, 2020
  • Bellouin, N, Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K.S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D.T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S.E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., & Stevens, B., 2020: Bounding global aerosol radiative forcing of climate change, Reviews of Geophysics,  58, e2019RG000660. https://doi.org/10.1029/2019RG000660
  • Fiedler, S., Kinne, S., Huang, W. T. K., Räisänen, P., O'Donnell, D., Bellouin, N., Stier, P., Merikanto, J., van Noije, T., Makkonen, R., and Lohmann, U., 2019: Anthropogenic aerosol forcing – insights from multiple estimates from aerosol-climate models with reduced complexity, Atmos. Chem. Phys., 19, 6821–6841, doi:10.5194/acp-19-6821-2019.
  •  Fiedler, S., Stevens, B., Gidden, M., Smith, S. J., Riahi, K., and van Vuuren, D., 2019: First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect, Geosci. Model Dev., 12, 989-1007, doi:10.5194/gmd-12-989-2019.