zum Inhalt springen

Bernhard Pospichal

Address Pohligstr. 3, 50969 Köln
Room 3.108
Phone +49 (0)221 470-3691
Fax +49 (0)221 470-5161
Mail bernhard.pospichalSpamProtectionuni-koeln.de

Research topics:

  • Ground-based microwave radiometry (retrieval development, calibration, quality control)
  • Sensor synergy for ground-based remote sensing of water vapor and clouds
  • Applications of atmospheric remote sensing for renewable energies

Projects:

  • JOYCE-CF (Jülich Observatory for Cloud Evolution – Core Facility) – http://joyce.cloud
  • ACTRIS (Aerosol-Cloud-Trace Gas Research Infrastructure)

Links:

Publications (selected):

Neher I., T. Buchmann, S. Crewell, B. Evers-Dietze, K. Pfeilsticker, B. Pospichal, C. Schirrmeister, S. Meilinger, 2017: Impact of atmospheric aerosols on photovoltaic energy production Scenario for the Sahel zone. Energy Procedia, 125, 170–179, doi: 10.1016/ j.egypro.2017.08.168

 

Foth A., B. Pospichal, 2017: Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer. Atmos. Meas. Tech., 10, 3325–3344, doi: 10.5194/amt-10-3325-2017

 

Merk D., H. Deneke, B. Pospichal, P. Seifert, 2016: Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations. Atmos. Chem. Phys., 16, 933–952, doi: 10.5194/acp-16-933-2016

 

Massaro G., I. Stiperski, B. Pospichal, M. Rotach, 2015: Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8, 3355–3367, doi: 10.5194/amt-8-3355-2015

 

Brückner, M., B. Pospichal, A. Macke, M. Wendisch, 2014: A New Multi–Spectral Cloud Retrieval Method for Ship–based Solar Transmissivity Measurements. J. Geophys. Res., 119, 11338–11354. doi: 10.1002/2014JD021775

 

Pospichal, B., D. Bou Karam, S. Crewell, C. Flamant, A. Hünerbein, O. Bock, and F. Said, 2010: Diurnal cycle of the inter-tropical discontinuity over West Africa analysed by remote sensing and mesoscale modelling. Quarterly Journal of the Royal Meteorological Society, 136, 92–106. doi: 10.1002/qj.435