skip to content

Water vapor, clouds and radiative effects in the Arctic

With ground-based remote sensing observations, we can continuously monitor the Arctic atmosphere 24/7. In particular, we are interested in atmospheric processes related to water vapor, clouds and precipitation. Corresponding information can be gained from e.g. cloud radar, microwave radiometer and micro rain radar observations. Such observations are available at the Arctic research base AWIPEV at Ny-Ålesund (Svalbard) where we operate various instrumentation and synergetically combine it also with the collocated measurements of the Alfred-Wegener-Institute (see observations here). In combination with radiative transfer modeling, we also assess the impact of clouds on atmospheric radiative fluxes and heating rates.

These long-term measurements are complemented by campaign based activities, e.g as part of MOSAiC and COMBLE. Satellite observations further help us to gain a large scale view on clouds and water vapor in the Arctic.

Learn more about

  • the Ny-Ålesund measurements, clouds, water vapor and radiative effects from Kerstin Ebell
  • water vapor in the central Arctic from Andreas Walbröl

Relevant publications

submitted

  • Rückert, J.E., A. Walbröl, N. Risse, P. Krobot, R. Haseneder-Lind, M. Mech, K. Ebell, and G. Spreen: Measuring microwave sea ice and ocean brightness temperature and emissivity between 22 and 243 GHz by ship-based radiometers with rotatable mirrors, Annals of Glaciology, submitted on 30 Dec 2023

  • Rückert, J.E., P. Rostosky, M. Huntemann, D. Clemens-Sewall, K. Ebell, L. Kaleschke, J. Lemmetyinen, A. Macfarlane, R. Naderpour, J. Stroeve, A. Walbröl, and G. Spreen: Effect of warm air intrusions on satellite-based sea ice concentration retrievals: A case study of the April 2020 events during the MOSAiC expedition, Elementa: Science of the Anthropocene, submitted on 15 March 2022

  • Walbröl, A., J. Michaelis, S. Becker, H. Dorff, I. Gorodetskaya, B. Kirbus, M. Lauer, N. Maherndl, M. Maturilli, J. Mayer, H. Müller, R. A. J. Neggers, F. M. Paulus, J. Röttenbacher, J. E. Rückert, I. Schirmacher, N. Slättberg, A. Ehrlich, M. Wendisch, and S. Crewell: Environmental conditions in the North Atlantic sector of the Arctic during the HALO-(AC)3 campaign, Atmos. Chem. Phys., https://doi.org/10.5194/egusphere-2023-668, in discussion since 13 April 2023

2023

  • Chellini, G., R. Gierens, K. Ebell, T. Kiszler, P. Krobot, A. Myagkov, V. Schemann, and S. Kneifel: Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations, Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023
  • Heinemann, G., L. Schefczyk, R. Zentek, I. M. Brooks, S. Dahlke, and A. Walbröl, 2023: Evaluation of Vertical Profiles and Atmospheric Boundary Layer Structure Using the Regional Climate Model CCLM during MOSAiC, Meteorology, 2, 257-275, https://doi.org/10.3390/meteorology2020016.
  • Kirbus, B. et al. (incl. Crewell, S., Ebell, K., Lauer, M., Rückert, J., Walbröl A.), 2023: Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC, Frontiers in Earth Science, Sec. Atmospheric Science, 11, https://doi.org/10.3389/feart.2023.1147848
  • Kiszler, T., K. Ebell, and V. Schemann, 2023: A performance baseline for the representation of clouds and humidity in cloud-resolving ICON-LEM simulations in the Arctic, //Journal of Advances in Modeling Earth Systems//, 15, e2022MS003299, https://doi.org/10.1029/2022MS003299
  • Lauer, M., A. Rinke, I. Gorodetskaya, M. Sprenger, M. Mech, S. Crewell, 2023: Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic, Atmospheric Chemistry and Physics, 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023.
  • Pasquier, J. T., J. Henneberger, A. Korolev, F. Ramelli, J. Wieder, A. Lauber, G. Li, R. O. David, T. Carlsen, R. Gierens, M. Maturilli, and U. Lohmann, 2023: Understanding the history of complex ice crystal habits deduced from a holographic imager, Geophysical Research Letters, 50, e2022GL100247, https://doi.org/10.1029/2022GL100247.
  • Vinjamuri, K. S., M. Vountas, L. Lelli, M. Stenger, M. D. Shupe, K. Ebell, and J. P. Burrows, 2023: Validation of the Cloud_CCI cloud products in the Arctic, Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023.
  • Wendisch, M., et al. (incl. S. Crewell, V. Schemann, K. Ebell, R. Gierens, L.-L. Kliesch, M. Lauer, M. Mech), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bulletin of the American Meteorological Society, 104(1), E208-E242, https://doi.org/10.1175/BAMS-D-21-0218.1

2022

  • Bresson, H., a. Rinke, M. Mech, D. Reinert, V. Schemann, K. Ebell, M. Maturilli, C. Viceto, I. Gorodetskaya, and S. Crewell, 2022: Case study of a moisture intrusion over the Arctic with the ICON model: resolution dependence of its representation, Atmospheric Chemistry and Physics, 22, 173–196, https://doi.org/10.5194/acp-22-173-2022
  • Chellini, G., R. Gierens, and S. Kneifel, 2022: Ice Aggregation in Low-Level Mixed-Phase Clouds at a High Arctic Site: Enhanced by Dendritic Growth and Absent Close to the Melting Level, Journal of Geophysical Research: Atmospheres, 127, e2022JD036860, https://doi.org/10.1029/2022JD036860
  • Geerts, Bart, et al. (incl. S.Crewell, K. Ebell), 2022: The COMBLE campaign: a study of marine boundary-layer clouds in Arctic cold-air outbreaks, Bulletin of the American Meteorological Society, 103, 5, E1371-E1389 https://doi.org/10.1175/BAMS-D-21-0044.1
  • King, F., G. Duffy, L. Milani, C. G. Fletcher, C. Pettersen and K. Ebell, 2022: DeepPrecip: a deep neural network for precipitation retrievals, Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022
  • Pasquier, J. T., et al. (incl. R. Gierens, K. Ebell), 2022: The Ny-Ålesund Aerosol Cloud Experiment (NASCENT): Overview and First Results, Bulletin of the American Meteorological Society, https://doi.org/10.1175/BAMS-D-21-0034.1
  • Pasquier, J. T., J. Henneberger, F. Ramelli, A. Lauber, R. O. David, J. Wieder, T. Carlsen, R. Gierens, M. Maturilli, and U. Lohmann, 2022: Conditions favorable for secondary ice production in Arctic mixed-phase clouds, Atmospheric Chemistry and Physics, 22, 15579-15601. https://doi.org/10.5194/acp-22-15579-2022
  • Shupe et al. (incl. S. Crewell, K. Ebell, M. Mech), 2022: Overview of the MOSAiC Expedition—Atmosphere. Elementa: Science of the Anthropocene 10(1), https://doi.org/10.1525/elementa.2021.00060
  • von Lerber, A., M. Mech, A. Rinke, D. Zhang, M. Lauer, A. Radovan, I. Gorodetskaya, S. Crewell, 2022: Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic, Atmospheric Chemistry Physics, 22, 7287-7317, https://doi.org/10.5194/acp-22-7287-2022
  • Walbroel, A., S. Crewell, R. Engelmann, E. Orlandi, H. Griesche, M. Radenz, J. Hofer, D. Althausen, M. Maturilli, and K. Ebell,2022: Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Scientific Data 9, 534, https://doi.org/10.1038/s41597-022-01504-1.

2021

  • Crewell, C.K. Ebell, P. Konjari, M. Mech, T. Nomokonova, A. Radovan, D. Strack, A. M. Triana Gomez, S. Noel, R. Scarlat, G. Spreen, M. Maturilli, A. Rinke, I. Gorodetskaya, C. Viceto, T. August, and M. Schröder, 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, Atmos. Meas. Tech., 14, 4829-4856, https://doi.org/10.5194/amt-14-4829-2021
  • Karlsson, L., R. Krejci, M. Koike, K. Ebell, and Paul Zieger, 2021: A long-term study of cloud residuals from low-level Arctic clouds, Atmos. Chem. Phys., 21, 8933–8959, https://doi.org/10.5194/acp-21-8933-2021.
  • Schoger, S. Y., D. Moisseev, A. von Lerber, S. Crewell, and K. Ebell, 2021: Snowfall rate retrieval for K- and W-band radar measurements designed in Hyytiälä, Finland, and tested at Ny-Ålesund, Svalbard, Journal of Applied Meteorology and Climatology, 60(3), 273-289, https://doi.org/10.1175/JAMC-D-20-0095.1

2020

  • Ebell, K., T. Nomokonova, M. Maturilli, and C. Ritter, 2020: Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations, Journal of Applied Meteorology and Climatology, 59, 3-22, https://doi.org/10.1175/JAMC-D-19-0080.1
  • Gierens, R., S. Kneifel, M. D. Shupe, K. Ebell, M. Maturilli, and U. Löhnert, 2020: Low-level mixed-phase clouds in a complex Arctic environment, Atmospheric Chemistry and Physics, 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020

  • Nomokonova, T., K. Ebell, U. Löhnert, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund, Atmospheric Chemistry and Physics, 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020

  • Schemann, V. and K. Ebell, 2020: Simulation of mixed-phase clouds with the ICON large-eddy model in the complex Arctic environment around Ny-Ålesund, Atmospheric Chemistry and Physics, 20, 475–485, https://doi.org/10.5194/acp-20-475-202

2019

  • Nomokonova, T., K. Ebell, U. Löhnert, M. Maturilli, C. Ritter, E. O'Connor, 2019: Statistics on clouds and their relation to thermodynamic conditions at Ny-Ålesund using ground-based sensor synergy, Atmospheric Chemistry and Physics, 19, 4105-4126, https://doi.org/10.5194/acp-19-4105-2019
  • Rinke A., B. Segger, S. Crewell, M. Maturilli, T. Naakka, T. Nygard, T. Vihma, F. Alshawaf, G. Dick, J. Wickert and J. Kellert, 2019: Trends of vertically integrated water vapor over the Arctic during 1979-2016: Consistent moistening all over? Journal of Climate, 32, 6097-6116, https://doi.org/10.1175/JCLI-D-19-0092.1
  • Wendisch, M., A. et al., 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bulletin of the American Meteorological Society, 100 (5), 841-871, https://doi.org/10.1175/BAMS-D-18-0072.1

2018

  • Maturilli, M. and K. Ebell, 2018: Twenty-five years of cloud base height measurements by ceilometer in Ny-Ålesund, Svalbard, Earth Syst. Sci. Data, 10, 1451-1456, https://doi.org/10.5194/essd-10-1451-2018.

2017

  • Ebell, K., U. Löhnert, E. Päschke, E. Orlandi, J. H. Schween, and S. Crewell, 2017: A 1-D variational retrieval of temperature, humidity, and liquid cloud properties: Performance under idealized and real conditions, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD025945.
  • Wendisch, M., M. Brückner, J. P. Burrows, S. Crewell, K. Dethloff, K. Ebell, Ch. Lüpkes, A. Macke, J. Notholt, J. Quaas, A. Rinke, and I. Tegen, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, doi:10.1029/2017EO064803