zum Inhalt springen


Graphisches Slider Element

Stefan Kneifel moved to LMU Munich - more information

We investigate how ice and snow particles are generated in clouds because they are the origin of almost all precipitation falling to the surface. We use multiple meteorological radars to evaluate and improve the ability of numerical models to better simulate the ice part of clouds.

Key Research Areas:

Key Methods:

Selected Publications:

  • Mróz, K., A. Battaglia, S. Kneifel, L. von Terzi, M. Karrer, and D. Ori, 2021: Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study., Atmos. Meas. Tech., 14, 511-529, https://doi.org/10.5194/amt-14-511-2021.
  • Gong, J., X. Zeng, D. Wu, S. J. Munchak, X. Li, S. Kneifel, D. Ori, L. Liao, and D. Barahona, 2020: Linkage among Ice Crystal Microphysics, Mesoscale Dynamics and Cloud and Precipitation Structures Revealed by Collocated Microwave Radiometer and Multi-frequency Radar Observations, Atmos. Chem. Phys., 20, 12633-12653, https://doi.org/10.5194/acp-20-12633-2020.

  • Myagkov, A., S. Kneifel, and T. Rose: Evaluation of the reflectivity calibration of W-band radars based on observations in rain. Atmos. Meas. Tech., https://doi.org/10.5194/amt-2020-133, accepted.

  • Kneifel, S., and D. Moisseev, 2020: Long-term statistics of riming in non-convective clouds derived from ground-based Doppler cloud radar observations, J. Atmos. Sci., accepted.

  • Tridon, F., A. Battaglia, and S. Kneifel, 2020: How to estimate total differential attenuation due to hydrometeors with ground-based multi-frequency radars?, Atmos. Meas. Tech., https://doi.org/10.5194/amt-2020-159, accepted.

  • Mech, M., M. Maahn, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: A Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, Geosci. Model Dev., https://doi.org/10.5194/gmd-2019-356, accepted

  • Battaglia, A., S. Tanelli, F. Tridon, S. Kneifel, J. Leinonen, and P. Kollias, 2020: Triple-Frequency Radar Retrievals. . In V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J. Turk (Ed.), Satellite Precipitation Measurement (Vol. 1), New York: Springer, ISBN: 978-3-030-24568-9.

  • Kneifel, S., J. Leinonen, J. Tyynelä, D. Ori, and A. Battaglia, 2020: Scattering of Hydrometeors. In V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J. Turk (Ed.), Satellite Precipitation Measurement (Vol. 1), New York: Springer, ISBN: 978-3-030-24568-9.

  • Lubin, D., D. Zhang, I. Silber, R.C. Scott, P. Kalogeras, A. Battaglia, D.H. Bromwich, M. Cadeddu, E. Eloranta, A. Fridlind, A. Frossard, K.M. Hines, S. Kneifel, W.R. Leaitch, W. Lin, J. Nicolas, H. Powers, P.K. Quinn, P. Rowe, L.M. Russell, S. Sharma, J. Verlinde, and A.M. Vogelmann, 2020: AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment, Bull. Amer. Meteor. Soc., 101, 7, E1069-E1091, doi: 10.1175/BAMS-D-18-0278.1

  • Mroz, K., A. Battaglia, S. Kneifel, L. P. D’Adderio, and J. Dias Neto, 2020: Triple-frequency Doppler retrieval of characteristic raindrop size, Earth and Space Science, 7, e2019EA000789, doi: 10.1029/2019EA000789.

  • Karrer, M., Seifert, A., Siewert, C., Ori, D., von Lerber, A. and Kneifel, S. 2020, Ice Particle Properties Inferred from Aggregation Modelling, Journal of Advances in Modeling Earth Systems, 12, doi:10.1029/2020MS002066

  • A. Seifert, J. Leinonen, C. Siewert, and S. Kneifel, 2019: The geometry of rimed aggregate snowflakes: A modeling study, Journal of Advances in Modeling Earth Systems, 11, https://doi.org/10.1029/2018MS001519

  • F. Tridon, A. Battaglia, R. J. Chase, F. J. Turk, J. Leinonen, S. Kneifel, K. Mroz, J. Finlon, A. Bansemer, S. Tanelli, A. J. Heymsfield, S. W. Nesbitt, 2019: The microphysics of stratiform precipitation during OLYMPEx: compatibility between 3-frequency radar and airborne in situ observations, J. Geophys. Res., 124, 8764-8792. https://doi.org/10.1029/2018JD029858.
  • S. L. Mason, R. J. Hogan, C. D. Westbrook, S. Kneifel, D. Moisseev, and L. von Terzi, 2019: The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow, Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019
  • Dias Neto, J., Kneifel, S., Ori, D., Trömel, S., Handwerker, J., Bohn, B., Hermes, N., Mühlbauer, K., Lenefer, M., and Simmer, C, 2019: The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation, Earth Syst. Sci. Data, 11, 845-863, https://doi.org/10.5194/essd-11-845-2019
  • Ori, D., and S. Kneifel, 2018: Assessing the uncertainties of the Discrete Dipole Approximation in case of melting ice particles, J. Quant. Spectrosc. Radiat. Transfer, 217, 396-406, doi: 10.1016/j.jqsrt.2018.06.017. Link: https://www.sciencedirect.com/science/article/pii/S0022407318302942
  • Leinonen, J., S. Kneifel, and R. J. Hogan, 2018: Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes, Q. J. Roy. Meteor. Soc., 144, 77-88, doi:10.1002/qj.3093. Link: https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3093
  • Kneifel S., P. Kollias, A. Battaglia, J. Leinonen, M. Maahn, H. Kalesse, and F. Tridon, 2016: First Observations of Triple Frequency Radar Doppler Spectra in Snowfall, 2016: Interpretation and Applications, Geophys. Res. Lett., 43, 2225–2233, doi: 10.1002/2015GL067618. Link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL067618
  • Kneifel S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed Relations between Snowfall Microphysics and Triple-frequency Radar Measurements, J. Geophys. Res., 120, 6034-6055, doi: 10.1002/2015JD023156. Link: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023156

  • Video on How does a cloud form on YouTube: